Оля утверждает что площадь правильного пятиугольника. Как найти площадь пятиугольника
Вычисление площади многоугольникаГородская научно-практическая конференция юных исследователей
«Будущее Петрозаводска»
Вычисление площади
многоугольника
Качановская Алина Игоревна
9Б класс, г. Петрозаводск.
учитель математики
МОУ «Гимназия №30 имени Музалева Д.Н.»
Вычисление площади многоугольника
Гипотеза.Используя координатный метод и формулу Пика, можно сократить время
для вычисления площади многоугольника.
Объект исследования – площадь многоугольника.
Предмет исследования – способы нахождения площади многоугольника.
Цель исследования: изучить методы вычисления площади по координатам
вершин и с помощью формулы Пика и научиться применять их на практике.
Задачи:
изучить теоретический материал по данной теме;
вывести формулы вычисления площади по координатам;
на практике применить данные способы для вычисления площадей
многоугольников;
сравнить результаты нахождения площади многоугольников разными
способами.
Методы исследования: изучение литературы и Интернет-ресурсов,
сравнение, обобщение, аналогия.
Вычисление площади многоугольника по координатам его вершин
Найти площадь пятиугольника АВСDE с вершинами:А(5;7), В(1;1), С(- 4; 2), D(- 1; - 4), Е(4; - 3).
х
у
А
5
7
В
1
1
С
-4
2
D
-1
-4
Е
4
-3
А
5
7
1) Абсциссу 1 точки умножаем на
ординату 2 точки, абсциссу 2 точки - на
ординату 3 точки и так далее.
Складываем произведения:
5 ∙ 1 + 1 ∙ 2 + (-4) ∙ (-4) + (-1) ∙ (- 3) + 4∙7 = 54.
2) Ординату 1 точки умножаем на абсциссу
2 точки, ординату 2 точки - на абсциссу 3
точки и так далее.
Складываем произведения:
7 ∙ 1 + 1 ∙ (-4) + 2 ∙ (-1) + (-4) ∙ 4 + (- 3) ∙5 = - 30.
3) Из первой суммы вычитаем вторую: 54 – (- 30) = 84.
4) Полученную сумму делим на 2: 84: 2 = 42.
SABCDE = 42 кв. ед.
х
у
А1
х1
у1
А2
х2
у2
А3
х3
у3
А1
х1
у1
Треугольник А1А2А3 с координатами
вершин (х1, у1), (х2,у2) и (х3, у3).
S 0,5 (x1 y2 x2 y3 x3 y1 y1 x2 y2 x3 y3 x1)
Равенство 1
Вычисление площади треугольника
.S A1 A2 A3 S A2 A1B1B2 S A2 A3 B3 B2 S A3 A1B1B3
(равенство 2)
Так как А1А2В2В1 трапеция, то
S = 0,5(А2В2 + А1В1) ∙ В2В1
S A2 A1B1B2 0,5 y2 y1 x1 x2 .
S A2 A3 B3 B2 0,5 y 2 y 3 x3 x 2 и
S A3 A1B1B3 0,5 y3 y1 x1 x3 .
S А1 А2 А3 0,5 у 2 у1 х1 х 2 0,5 у 2 у3 х3 х 2 0,5 у1 у 3 х1 х3
0,5 у 2 х1 0,5 у 2 х2 0,5 у1 х1 0,5 у1 х2 0,5 у 2 х3 0,5 у 2 х2 0,5 у3 х3 0,5 у3 х2 0,5 у3 х1
0,5 у3 х3 0,5 у1 х1 0,5х3 у1 0,5 х1 у 2 х2 у3 х3 у1 0,5 у1 х2 у 2 х3 у3 х1
Вычисление площади треугольника
.S A1 A2 A3 S A2 A3 B3 B2 S A2 A1B1B2 S A1 A3 B3 B1
(равенство 3)
S A2 A3 B3 B2 0,5 y 2 y 3 x3 x 2
S A2 A1B1B2 0,5 y 2 y1 x1 x 2
S A3 A1B1B3 0,5 y 3 y1 x3 x1
Выполним алгебраические преобразования
S А1 А2 А3 0,5 у 2 у3 х3 х 2 0,5 у 2 у1 х1 х 2 0,5 у1 у 3 х3 х1
0,5 у 2 х3 0,5 у 2 х2 0,5 у3 х3 0,5 у3 х2 0,5 у 2 х1 0,5 у 2 х2 0,5 у1 х1 0,5 у1 х2 0,5 у1 х3
0,5 у1 х1 0,5 у3 х3 0,5х1 у3 0,5 х1 у 2 х2 у3 х3 у1 0,5 у1 х2 у 2 х3 у3 х1
0,5 (x1 y2 x2 y3 x3 y1 y1 x2 y2 x3 y3 x1) .
Вычисление площади треугольника
Если вершины треугольника взяты против часовой стрелки, тоЕсли вершины треугольника взяты по часовой стрелке, то
S 0,5 (x1 y2 x2 y3 x3 y1 y1 x2 y2 x3 y3 x1) .
S 0,5 | x1 y2 x2 y3 x3 y1 y1 x2 y2 x3 y3 x1 |
ΔАВС, А(- 3; 2), В(4,5; 0,8), С(1,8; -3,5)
Ах
у
А
-3
2
С
4,5
0,8
В
1,8
-3,5
А
-3
2
В
С
S=0,5((-3∙0,8+4,5∙(-3,5)+(1,8∙2)) –
– (2∙4,5+0,8∙1,8+(-3,5) ∙(-3))=17,745
Вычисление площади четырехугольника
.S A1 A2 A3 А4 S A1 A2 А4 S A2 A3 А4
S А1 А2 А4 0,5 (x1 y 2 x 2 y 4 x 4 y1 y1 x 2 y 2 x 4 y 4 x1)
S А2 А3 А4 0,5 (x 2 y3 x3 y 4 x 4 y 2 y 2 x3 y 3 x 4 y 4 x 2)
Выполним алгебраические преобразования
S A1 A2 A3 А4 0,5 х1 у 2 0,5 х 2 у 4 0,5 х 4 у1 0,5 у1 х 2 0,5 у 2 х 4 0,5 у 4 х1 0,5 х 2 у3 0,5 х3 у 4
0,5х4 у 2 0,5 у 2 х3 0,5 у3 х4 0,5 у 4 х2 0,5(х1 у 2 х2 у3 х3 у 4 х4 у1) 0,5(у1 х2 у 2 х3
у3 х4 у 4 х1)
S 0,5 (x1 y 2 x2 y3 x3 y 4 х4 у1 y1 x2 y 2 x3 y3 x4 у 4 х1)
10. МКРN, М(2; 4), К(-2,2; 0),Р(-2; 5,3), N(3;7)
МN
К
Р
S = 0,5((2∙0+(-2,2) ∙5,3+(-2) ∙7+3 ∙4) –
– (4∙(-2,2)+0∙(-2)+5,3 ∙3+7 ∙2) = 17,38
x
y
M
2
4
K
-2,2
0
P
-2
5,3
N
3
7
М
2
4
11. Алгоритм вычисления площади много- угольника по координатам его вершин
Алгоритм вычисления площади многоугольника по координатам его вершинх
у
А1
х1
у1
1). Составить таблицу (вершины – против часовой
стрелки).
А2
х2
у2
2). Выполнить вычисления по схеме:
…
…
…
Аn
хn
уn
А1
х1
у1
1. Считаем сумму произведений координат,
левого верхнего угла к правому нижнему.
2. Считаем сумму произведений координат,
соединенных стрелками, направленными от
правого верхнего угла к левому нижнему.
3. От первой суммы вычитаем вторую сумму
и результат делим пополам.
S 0,5 x1 y2 x2 y3 ... xn y1 y1 x2 y2 x3 ... yn x1 .
12. АВСDE, А(-2,4; 3), В(1,2; 0,4), С(-1,5; -4), D(-5; -4), Е(-6,2; 1,4)
АЕ
В
D
С
S=0,5((-2,4)∙1,4+(-6,2) ∙(-4) ∙(-5) ∙(-4)+
+(-1,5) ∙ 0,4+1,2∙3) – (3 ∙(6,2)+1,4 ∙(-5)+
+(-4) ∙(-1,5)+(-4)∙1,2+0,4 ∙(-2,4)) = 34,9
х
у
А
-2,4
3
Е
-6,2
1,4
D
-5
-4
С
-1,5
-4
В
1,2
0,4
А
-2,4
3
13. Вычисление площади многоугольников по формуле Пика
Площадь многоугольника, изображенного наклетчатой бумаге:
Г
S В 1
2
Георг Пик
(1859 – 1942)
Г – количество целочисленных точек на границе
многоугольника,
В – количество целочисленных точек внутри
многоугольника.
14. Вычисление площади многоугольников по формуле Пика
12
Г = 6, В = 26.
S = 6: 2 + 26 – 1 = 28 (кв. ед.)
Г = 10,
В = 36.
S = 10: 2 + 36 – 1 = 40 (кв. ед.)
15. Вычисление площади многоугольников разными способами
Площадь треугольника АВСДостраивание
По формуле Пика
По координатам вершин
S = 20 кв. ед.
16. Вычисление площади многоугольников разными способами
Площадь выпуклогочетырехугольника АВСD
Достраивание
По формуле Пика
По координатам вершин
Разбиение
S = 40 кв. ед.
17. Вычисление площади многоугольников разными способами
Площадь невыпуклогочетырехугольника АВСD
Достраивание
По формуле Пика
Разбиение
По координатам его вершин
S = 15 кв. ед.
18. Вычисление площади многоугольников разными способами
Площадь невыпуклогосемиугольника АВСDЕКМ
Достраивание
По формуле Пика
По координатам его вершин
S = 47,5 кв. ед.
19. Вычисление площади многоугольника
Представлены два способа вычисления площади многоугольника:по координатам его вершин и по формуле Пика.
Выведена формула для вычисления площади треугольника по
координатам его вершин.
Выведена формула для вычисления площади четырехугольника по
координатам его вершин.
координатам их вершин.
Приведены примеры вычисления площадей многоугольников по
формуле Пика.
Приведены примеры вычисления площади одного и того же
многоугольника разными способами.
20. Вычисление площади многоугольника
Городская научно-практическая конференция юных исследователей«Будущее Петрозаводска»
Вычисление площади
многоугольника
Качановская Алина Игоревна
МОУ «Гимназия №30 имени Музалева Д.Н.»,
9Б класс, г. Петрозаводск.
Руководитель Орлова Ирина Анатольевна
учитель математики
МОУ «Гимназия №30 имени Музалева Д.Н.»
Многоугольник или полигон - геометрическая фигура, которая имеет n-ное количество углов. В общем случае многоугольник - это часть плоскости, которая ограничена замкнутой ломанной.
Геометрия многоугольников
В целом такая геометрическая фигура может иметь абсолютно любой вид. К примеру, символы звезды и компаса, полигон для моделирования или грань шестеренки - многоугольники. Многоугольные фигуры разделяются на две группы:
- невыпуклые, которые имеют любую причудливую форму с возможными самопересечениями (самый очевидный пример - звезда);
- выпуклые, все точки которых находятся по одну сторону от прямой, проведенной через две соседние вершины (квадрат, треугольник).
Выпуклый полигон, у которого все углы равны и все стороны равны, считается правильным и имеет собственное название. К примеру, правильный пятиугольник называется пентагон, шести - гексагон, восьмиугольник - октагон, десятиугольник - декагон, одиннадцатиугольник - гендекагон, двенадцати - додекагон. Любой правильный многоугольник имеет свою вписанную и описанную окружность. При этом круг также можно представить как правильный полигон, который имеет бесконечное количество углов.
Многоугольники в реальности
Невыпуклые многоугольники практически не распространены в реальной жизни: они довольно редко встречаются в природе, а в рукотворном виде она выступают в роли граней деталей машин. Многие морские организмы обладают пентасимметрией, и наиболее очевидным примером невыпуклой фигуры является морская звезда.
Правильные геометрические фигуры наоборот широко встречаются в природе. Наиболее очевидным примером являются пчелиные соты, каждая ячейка которых представляет собой гексагон. Такие гексагональные ячейки позволяют маленьким труженицам наиболее экономно использовать площадь улья, заполняя пространство без просветов. Кроме того, многие простейшие организмы, например радиолярии, имеют форму правильных полигонов.
Площадь многоугольника
Площадь геометрической фигуры - это характеристика плоского объекта, которая показывает его размер. Площадь невыпуклых многоугольников находится путем разбиения фигуры на более мелкие составляющие, обычно треугольники или квадраты. Наш онлайн-калькулятор позволяет вычислять площадь только правильных многоугольников, которая определяется общей формулой:
S = n/4 × a^2 × ctg(pi/n),
где n - количество сторон фигуры, a - длина стороны.
Подставляя вместо n количество сторон фигуры можно получить формулу для определения площади любого правильного полигона, которая будет представлять собой площадь квадрата a^2, умноженного на определенный коэффициент. Интересно, что при увеличении количества углов этот коэффициент также будет увеличиваться, к примеру, для пентагона - 1,72, а гексагона - 2,59.
Так как около любого правильного полигона можно описать окружность или вписать ее в него, мы можем использовать соответствующие радиусы для вычисления площадей многоугольников. Сторона и радиус описанной окружности для любого полигона соотносятся как:
a = R × 2 sin (pi/n),
где R – радиус описанной окружности, n – количество сторон геометрической фигуры.
Для вписанной в полигон окружности соотношение немного изменяется и выглядит как:
a = r × 2 tg (pi/n),
где r – радиус вписанной окружности.
Таким образом, для определения площади любого правильного полигона вам понадобится указать количество сторон n и любой параметр на выбор:
- длина стороны a;
- радиус вписанной окружности r;
- радиус описанной окружности R.
Рассмотрим пару примеров для нахождения площади любого многоугольника.
Примеры из жизни
Пчелиные соты
Пчелиные соты - уникальный природный объект, который состоит из множества гексагональных призматических ячеек. Давайте подсчитаем, сколько таких шестиугольников находится в одних сотах. Для этого нам нужно узнать общую площадь и площадь одной ячейки. Из Википедии мы знаем, что стандартная рамка для сот имеет размеры 435 х 300 мм, соответственно, общая площадь составляет 130 500 квадратных миллиметров. Там же указано, что горизонтальный диаметр одной ячейки составляет примерно 5,5 мм. Горизонтальный диаметр полигона - это диаметр вписанной в него окружности, следовательно, мы знаем параметр r = 2,75 мм. Таким образом, при n = 6 площадь одной ячейки составляет:
Теперь мы можем узнать общее количество ячеек в одних сотах, которое выражается как 130500/26,19 = 4982
Снежинка
Снежинки имеют форму правильного треугольника или шестиугольника благодаря тому факту, что вода состоит из трех атомов и при переходе из одного агрегатного состояния в другое, молекулы воды соединяются с другими частицами и образуют треугольник или гексагон. Равносторонний треугольник - это такой же правильный полигон, как и другие, ведь он имеет три равных стороны и три равных угла. Соответственно, мы можем определить площадь такой снежинки, зная только длину стороны. Пусть сторона снежинки равна 8 условным единицам. Тогда для определения площади нам потребуется указать n = 3 и a = 8. Мы получим результат в виде:
Кроме площади абстрактной снежинки, наш калькулятор посчитал также радиусы вписанной и описанной окружности.
Заключение
Правильный полигон - это не только экзотический додекагон, но и квадрат или равносторонний треугольник, а значит, такую фигуру вы обязательно встретите не только в школьных задачах, но и в быту, на работе и в реальной повседневности. Используйте наш калькулятор для определения площадей любых правильных многоугольников.
- - минимальные данные, необходимые для решения задачи, а именно длина каждой стороны и диагонали пятиугольника;
- - калькулятор;
- - ручка;
- - лист бумаги.
Инструкция
Внимательно прочитайте условие поставленной задачи. Руководствуясь им, нарисуйте на листе бумаги предполагаемый пятиугольник.
Обозначьте длину каждой из его сторон.
Проведите в пятиугольнике две диагонали. Обозначьте длину каждой диагонали.
Обратите внимание на то, что получилось в результате проведения диагоналей, и вы увидите, что они разбивают пятиугольник на три различных между собой треугольника.
Из вершины каждого треугольника проведите высоту к его основанию.
Измерьте длину высоты опущенной на основание для каждого треугольника.
Определите всех трех треугольников по формуле, приведенной ниже:
S = 1/2 x H x a,
где S – вычисляемая площадь
треугольника;
H – высота каждого треугольника;
a – длина основания треугольника.
Вычислите площадь пятиугольника , сложив площади этих трех треугольников.
Обратите внимание
Помните, что правильным считается тот пятиугольник, у которого и все стороны, и все углы равны между собой. Если хотя бы одна сторона или угол отличается от других, то пятиугольник не считается правильным, и его площадь нельзя рассчитывать по упрощенной схеме.
Полезный совет
Проще всего определить площадь правильного пятиугольника. Для этого достаточно просто вычислить площадь одного из треугольников, а затем умножить ее на их количество. Ведь диагонали в правильном пятиугольнике разбивают его на треугольники одинаковой площади. Значительно упрощается задача и в том случае, если два угла пятиугольника являются прямыми. Достаточно провести одну диагональ, которая разобьет пятиугольник на треугольник и прямоугольник, площади которых можно найти совсем просто. Сумма вычисленных площадей будет равна площади самого пятиугольника.
