В модели смук используется. Система цветопередачи CMY, цветовая модель CMYK

Цвет и его модели

Софья Скрылина, преподаватель учебного центра «Арт», г.Санкт-Петербург

В КомпьюАрт № 7"2012 была представлена статья о гармоничных цветовых сочетаниях и закономерностях влияния цвета на восприятие человека, что, несомненно, учитывают в своих проектах современные дизайнеры. Но при работе за компьютером и смешивании цветов на экране монитора возникают специфические проблемы. Дизайнер должен получить на экране монитора или на твердой копии именно те цвет, тон, оттенок и светлоту, которые требуются. Цвета на мониторе не всегда совпадают с природными красками. Очень непросто получить один и тот же цвет на экране, на распечатке цветного принтера и на типографском оттиске. Дело в том, что цвета в природе, на мониторе и на печатном листе создаются абсолютно разными способами.
Для однозначного определения цветов в различных цветовых средах существуют цветовые модели, о которых мы и поговорим в настоящей статье.

Рекомендации по использованию графических форматов файлов

Бывают ситуации, когда для получения определенных нюансов требуются особые цвета. Их число не может быть бесконечным, но ограничено до трех технологий печати.

Условия доставки графических элементов

Размеры макета должны иметь дополнительный запас на 5 мм от размеров готового продукта.

Способы отправки графики

Если вы хотите, чтобы некоторые элементы были напечатаны фолио, они должны быть представлены в векторном формате. Желательно, чтобы используемые шрифты были, если возможно, векторизованными. При использовании он не предназначен для применения эффектов к объектам, которые содержат эти цвета. Для вашей работы вы можете создавать спички в аналоговом или цифровом формате. Список цветных принтеров не может использоваться как ссылка на цвет в процессе печати.

Модель RGB

Цветовая модель RGB — самый популярный способ представления графики, который подходит для описания цветов, видимых на мониторе, телевизоре, видеопроекторе, а также создаваемых при сканировании изображений.

Модель RGB используется при описании цветов, получаемых смешиванием трех лучей: красного (Red), зеленого (Green) и синего (Blue). Из первых букв английских названий этих цветов составлено название модели. Остальные цвета получаются сочетанием базовых. Цвета такого типа называются аддитивными, поскольку при сложении (смешивании) двух лучей основных цветов результат становится светлее. На рис. 1 показано, какие цвета получаются при сложении основных.

В зависимости от типа струйного принтера имеется как минимум 2 использованных картриджа: черный и трехцветный. Другие струйные принтеры используют 4 цвета, черный, голубой, пурпурный и желтый в отдельных картриджах. В струйных фотопечати также есть, помимо 4 основных, варианты, которые обеспечивают тонкость детализации: светло-серый, светло-голубой, светло-пурпурный. Цветные лазерные принтеры используют только четыре основных цвета.

Как и ожидалось, монохромные картриджи цветного принтера, будь то лазерные или струйные, не потребляют в одинаковом темпе. В зависимости от типа, цвета и охвата отпечатков, один или другой цветные картриджи могут оказаться впереди остальных. Какой из этих картриджей определенного цвета, когда он пуст, может быть загружен другим цветом, который нам нужен, и когда?


В модели RGB каждый базовый цвет характеризуется яркостью, которая может принимать 256 значений — от 0 до 255. Поэтому можно смешивать цвета в различных пропорциях, изменяя яркость каждой составляющей. Таким образом, можно получить 256x256x256 = 16 777 216 цветов.

Каждому цвету можно сопоставить код, используя десятичное и шестнадцатеричное представление кода. Десятичное представление — это тройка десятичных чисел, разделенных запятыми. Первое число соответствует яркости красной составляющей, второе — зеленой, а третье — синей. Шестнадцатеричное представление — это три двузначных шестнадцатеричных числа, каждое из которых соответствует яркости базового цвета. Первое число (первая пара цифр) соответствует яркости красного цвета, второе число (вторая пара цифр) — зеленого, а третье (третья пара) — синего.

Чемпионы со скоростью опорожнения - черные и длинные патроны, желтые. Очевидно, что черный картридж больше используется, потому что есть всевозможные монохромные отпечатки: векселя, валюты, документы, книги, учетные таблицы и т.д. желтый, с другой стороны, практически входит в состав нескольких печатных цветов, чем синий или розовый. Так часто бывает, что у многих принтеров есть черный картридж, больший, чем у других, и есть много случаев, когда даже желтый цвет негабаритный. Это приводит к любопытным явлениям, в зависимости от марки принтера: в зависимости от обстоятельств черные картриджи либо дороже, чем другие, либо дешевле.

Для проверки данного факта откройте палитру цветов в CorelDRAW или Photoshop. В поле R введите максимальное значение яркости красного цвета 255, а в поля G и B — нулевое значение. В результате поле образца будет содержать красный цвет, шестнадцатеричный код будет таким: FF0000 (рис. 2).


Рис. 2. Представление красного цвета в модели RGB: слева — в окне палитры Photoshop, справа — CorelDRAW

И мы подходим к вопросу в заголовке статьи, вызванному необходимостью и соблазном, более чем случайным, загружать один из пустых, заменяющих картриджей другого цвета, чем они были изначально, и которые мы используем более интенсивно. В зависимости от принтера следующие ответы.

Основное правило заключается в том, что, когда цвет может меняться, это может быть только в смысле цветного картриджа, загруженного черными чернилами. Обратное невозможно, потому что губки внутри картриджей, когда-то встроенные в черный цвет, больше не могут быть очищены, а любые чернила, которые вы положили, печатают очень темные - даже черные! Прежде всего, картриджи не могут быть перевернуты между ними в гнезде каретки принтера, потому что принтер обнаружит проблему и не разрешит печать. Кроме того, черный картридж с одним отсеком для чернил и одной печатающей головкой отличается от цветного картриджа тремя отсеками и тремя секциями печатающей головки. Однако есть комбинация, где можно что-то сделать! Если принтер работает только с цветным картриджем, он попытается получить черный цвет, наложив все три других цвета. Это правда, что он не слишком черным и печатает гораздо медленнее, и потребляет в 3 раза больше чернил, но в этом случае загрузка цветного картриджа черным цветом приведет к получению черного цвета вместо серого цвета. Таким образом, принтер будет использовать только чернила в этом отсеке, который является черным! С 4 патронами: голубой, пурпурный, желтый, черный. Эти принтеры имеют фиксированную печатающую головку в принтере, прикрепленном к каретке, прикрепленной к основному шпинделю, причем картриджи представляют собой простые контейнеры. Картриджи без электронного чипа. Если размеры не различаются, цветные картриджи могут быть загружены черным цветом. Но часто черный картридж намного больше черного цвета, и в результате он не вписывается в розетку. Загрузка цветного картриджа, кроме черного, приведет к комбинированному цвету. Например, желтый картридж, заполненный синим, будет печатать зеленый цвет из-за внутренней губки. Электронные картриджи. В этом случае все усложняется. Если можно заменить чипсы картриджей между ними, тогда ситуация падает до точки выше. Если чипы встроены в картридж или если есть физические направляющие, которые делают невозможным вставить картридж в другое место, чем на свое место, то смещение цвета не имеет смысла. Если у них нет чипа и все же имеют одинаковый размер, «светлые» версии могут даже быть успешно загружены с помощью тех же цветных чернил в интенсивной версии. Эти картриджи не имеют разных размеров или физических направляющих, которые требуют размещения только в выделенном слоте для каждого цвета. Конечно, это также связано с использованием нового электронного чипа, соответствующего этому цвету. Это не очень большая проблема, поэтому относительно легко изменить либо картриджи, либо принтер, чтобы можно было изменить цвет. Разница в калибровке. Это означает, что они не могут быть заменены картриджами одинакового размера, то есть цветами между ними.

  • С 2 картриджами: черный и трехцветный.
  • Фотоцветные картриджи часто уже, чем их обычные варианты.
  • Это делает невозможным обмен местами.
  • Различия только на уровне гидов.
Чтобы убедиться, что картриджи для картриджей можно загружать, обратитесь в наш отдел предложений.

Если к красному цвету добавить зеленый с максимальной яркостью, введя в поле G значение 255, получится желтый цвет, шестнадцатеричное представление которого — FFFF00.

Максимальная яркость всех трех базовых составляющих соответствует белому цвету, минимальная — черному. Поэтому белый цвет имеет в десятичном представлении код (255, 255, 255), а в шестнадцатеричном — FFFFFF16. Черный цвет кодируется соответственно (0, 0, 0) или 00000016.

Они называются аддитивными цветами. Они называются надстройками, потому что монитор черный, свет монитора должен включаться все больше и больше, пока они не дадут белый оттенок вместе. Монитор является источником света, поэтому ему больше не нужны бумага или печатные носители для отображения цветов.

Они называются субтрактивными цветами. Это связано с тем, что бумага не является источником света, подобным монитору, поэтому при печати цветовые оттенки формируются от обратного к белому. По этой причине также добавлен черный цвет. Чего ожидать. Самое главное - понять технологию печати, чтобы оправдать ожидания.

Все оттенки серого цвета образуются смешиванием трех составляющих одинаковой яркости. Например, при значениях R = 200, G = 200, B = 200 или C8C8C816 получается светло-серый цвет, а при значениях R = 100, G = 100, B = 100 или 64646416 — темно-серый. Чем более темный оттенок серого цвета вы хотите получить, тем меньшее число нужно вводить в каждое текстовое поле.

Эко-растворимая сублимация латекса. Как мы видим, чернила на водной основе имеют самый большой шанс представить цвета, отображаемые на экране. Обычно на получение цветов влияет и цветовой профиль, который вы используете, но технология ограничивает цветовое представление. Когда случается, что для профиля требуется цветовой код, и принтер не может его представлять, он заменяет его максимальным значением, которое он может представлять, рядом с этим кодом. Это влияет на все цвета.

Во-вторых, понимать, что печатные СМИ влияют на все цвета. Это может быть белая или желтая бумага, дерево или стекло, текстиль или баннер. Все эти поддержки являются решающими в цветовом представлении. Самая большая гамма производится только на максимально возможном белом фоне. Все остальное заставляет изображение искажать цвета, и принтер будет пытаться компенсировать, но часто без впечатляющего результата.

Что же происходит при выводе изображения на печать, как передаются цвета? Ведь бумага не излучает, а поглощает или отражает цветовые волны! При переносе цветного изображения на бумагу используется совершенно другая цветовая модель.

Модель CMYK

При печати на бумагу наносится краска — материал, который поглощает и отражает цветовые волны различной длины. Таким образом, краска выступает в роли фильтра, пропускающего строго определенные лучи отраженного цвета, вычитая все остальные.

Таким образом, существует разница между тем, как цвета поступают от тонера и цвета, которые производятся от водяных чернил и т.д. Продукты не могут быть персонализированы с использованием одной и той же технологии, поэтому нужны разные чернила, и между ними существует разница в цвете.

Однако он не может быть одного цвета на любом носителе. Что помогает калибровать монитор? Это просто помогает вам увидеть цвета как близкие к реальным значениям за картинкой, не более того. Для калибровки вам нужен спектрофотометр. Монитор генерирует разные цвета и различную интенсивность, а спектрофотометр, прикрепленный к экрану, считывает и, наконец, передает значения скорректированных данных чтения. Это создает профиль, который применяется к монитору. Эта калибровка требуется, чтобы делать это каждые 2 недели, потому что светодиоды стареют и больше не загораются, когда они загораются в первый день работы.

Цветовую модель CMYK используют для смешения красок печатающие устройства — принтеры и типографские станки. Цвета этой модели получаются в результате вычитания из белого базовых цветов модели RGB. Поэтому их называют субтрактивными.

Базовыми для CMYK являются следующие цвета:

  • голубой (Cyan) — белый минус красный (Red);
  • пурпурный (Magenta) — белый минус зеленый (Green);
  • желтый (Yellow) — белый минус синий (Blue).

Помимо этих, используется еще и черный цвет, который является ключевым (Key) в процессе цветной печати. Дело в том, что реальные краски имеют примеси, поэтому их цвет не соответствует в точности теоретически рассчитанным голубому, пурпурному и желтому. Смешение трех основных красок, которые должны давать черный цвет, дает вместо этого неопределенный грязно-коричневый. Поэтому в число основных полиграфических красок и внесена черная.

Несколько откалиброванных мониторов не означают мониторы, отображающие значения. Это связано с тем, что каждый монитор производится на определенную дату некоторыми разными производителями и разными стандартами. Между мониторами может быть сходство, только если мы возьмем 2 монитора одного типа, изготовленных в тот же день. Самое большее, что вы можете получить очень близкое, но никогда не идентичное значение. Поэтому, если у нас есть изображение, это изображение может иметь разные представления на каждом мониторе, даже если все мониторы откалиброваны.

На рис. 3 представлена схема, из которой видно, какие цвета получаются при смешении базовых в CMYK.


Следует отметить, что краски модели CMYK не являются столь чистыми, как цвета модели RGB. Этим объясняется небольшое несоответствие базовых цветов. Согласно схеме, представленной на рис. 3, при максимальной яркости должны получаться следующие комбинации цветов:

Совсем другое, что вы видите дома с тем, что вы видите в нас, хотя оба монитора откалиброваны. Поэтому, если у вас есть откалиброванный монитор, это не значит, что изображение должно появиться на экране, потому что оно не выходит, и все о чем-то еще. Мы надеемся, что этот текст поможет вам принять правильные решения о печати ваших документов.




Прежде чем говорить о большинстве случаев в цветовой системе, используемой в прессе, нам напомнили анекдот. Графический дизайнер сидит на террасе гавайского домика на пляже. Эта цветовая модель используется в цветной печати и в целом описывает процесс печати. В большинстве печатных машин чернила на печатных поверхностях передаются в том же порядке, что и в кодировке. Буква К - это не случайное английское слово «Ключ», а не «Черный». Остальные три цвета вычеркнуты черным цветом. Черный цвет также используется для затемнения тонов и уменьшения стоимости трех других цветных чернил.

  • смешение пурпурного (M) и желтого (Y) должно давать красный цвет (R) (255, 0, 0);
  • смешение желтого (Y) и голубого (C) должно давать зеленый цвет (G) (0, 255, 0);
  • смешение пурпурного (M) и голубого (C) должно давать синий цвет (B) (0, 0, 255).

На практике получается несколько иначе, что мы далее и проверим. Откройте диалоговое окно палитры цветов в программе Photoshop. В текстовые поля M и Y введите значение 100%. Вместо базового красного цвета (255, 0, 0) мы имеем красно-оранжевую смесь (рис. 4).

При печати продукции пресса краска переносится на мелкую бумагу с небольшими точками вместо того, чтобы вылить всю область рисования. Это так называемый метод полутоновой или растровой печати. Это необходимо для того, чтобы получить много оттенков. При печати растра возникает другая проблема. Параллельные линии разных цветных точек не могут быть идеально выровнены друг с другом, и, когда они пересекают рисунок, видны определенные обряды. Это так называемый рисунок Муаро. Чтобы избежать этого нежелательного эффекта, отдельные цветные растровые линии расположены под разными углами.


Теперь в текстовые поля Y и C введите значение 100%. Вместо базового зеленого цвета (0, 255, 0) получается зеленый цвет с небольшим оттенком синего. При задании яркости 100% в полях M и C вместо синего цвета (0, 0, 255) мы имеем синий цвет с фиолетовым оттенком. Более того, не все цвета модели RGB могут быть представлены в модели CMYK. Цветовой охват RGB шире, чем у CMYK.

Основные цвета моделей RGB и CMYK находятся в зависимости, представленной на схеме цветового круга (рис. 5). Эта схема применяется для цветовой коррекции изображений; примеры ее использования рассматривались в КомпьюАрт № 12"2011.


Модели RGB и CMYK являются аппаратно зависимыми. Для модели RGB значения базовых цветов определяются качеством люминофора у ЭЛТ или характеристиками ламп подсветки и цветовых фильтров панели у ЖК-мониторов. Если обратиться к модели CMYK, то значения базовых цветов определяются реальными типографскими красками, особенностями печатного процесса и носителя. Таким образом, одинаковое изображение может на различной аппаратуре выглядеть по-разному.

Как отмечалось ранее, RGB является наиболее популярной и часто применяемой моделью для представления цветных изображений. В большинстве случаев изображения подготавливаются для демонстрации через монитор или проектор и для печати на цветных настольных принтерах. Во всех этих случаях необходимо использовать модель RGB.

Замечание

Несмотря на то что в цветных принтерах используются чернила цветовой модели CMYK, чаще всего изображения, подготавливаемые для печати, необходимо преобразовать в модель RGB. Но распечатанное изображение будет выглядеть немного темнее, чем на мониторе, поэтому перед печатью его необходимо осветлить. Величина осветления для каждого принтера определяется опытным путем.

Модель CMYK необходимо применять в одном случае — если изображение готовится к печати на типографском станке. Более того, следует учесть, что модель CMYK не содержит столь же большого числа цветов, как модель RGB, поэтому в результате преобразования из RGB в CMYK изображение может утратить ряд оттенков, которые вряд ли получится восстановить обратным преобразованием. Поэтому старайтесь выполнять преобразование изображения в модель CMYK на конечном этапе работы с ним.

Модель HSB

Модель HSB упрощает работу с цветами, так как в ее основе лежит принцип восприятия цвета человеческим глазом. Любой цвет определяется своим цветовым тоном (Hue) — собственно цветом, насыщенностью (Saturation) — процентом добавления к цвету белой краски и яркостью (Brightness) — процентом добавления черной краски. На рис. 6 показано графическое представление модели HSB.


Спектральные цвета, или цветовые тона, располагаются по краю цветового круга и характеризуются положением на нем, которое определяется величиной угла в диапазоне от 0 до 360°. Эти цвета обладают максимальной (100%) насыщенностью (S) и яркостью (B). Насыщенность изменяется по радиусу круга от 0 (в центре) до 100% (на краях). При значении насыщенности 0% любой цвет становится белым.

Яркость — параметр, определяющий освещенность или затемненность. Все цвета цветового круга имеют максимальную яркость (100%) независимо от тона. Уменьшение яркости цвета означает его затемнение. Для отображения этого процесса на модели добавляется новая координата, направленная вниз, на которой откладываются значения яркости от 100 до 0%. В результате получается цилиндр, образованный из серии кругов с уменьшающейся яркостью, нижний слой — черный.

С целью проверки данного утверждения откройте диалоговое окно выбора цвета в программе Photoshop. В поля S и B введите максимальное значение 100%, а в поле H — минимальное значение 0°. В результате мы получим чистый красный цвет солнечного спектра. Этому же цвету соответствует красный цвет модели RGB, его код (255, 0, 0), что указывает на взаимосвязь этих моделей (рис. 7).


В поле H изменяйте значение угла с шагом 20°. Вы будете получать цвета в том порядке, в каком они расположены в спектре: красный сменится оранжевым, оранжевый желтым, желтый зеленым и т. д. Угол 60° дает желтый цвет (255, 255, 0), 120°— зеленый (0, 255, 0), 180°— голубой (255, 0, 255), 240° — синий (0, 0, 255) и т.д.

Чтобы получить розовый цвет, на языке модели HSB — блеклый красный, необходимо в поле H ввести значение 0°, а насыщенность (S) понизить, например, до 50%, задав максимальное значение яркости (B).

Серый цвет для модели HSB — это сведенные к нулю цветовой тон (H) и насыщенность (S) с яркостью (B) меньше 100%. Вот примеры светло-серого: H = 0, S = 0, B = 80% и темно-серого цветов: H = 0, S = 0, B = 40%.

Белый цвет задается так: H = 0, S = 0, B = 100%, а чтобы получить черный цвет, достаточно снизить до нуля значение яркости при любых значениях тона и насыщенности.

В модели HSB любой цвет получается из спектрального добавлением определенного процента белой и черной красок. Поэтому HSB — очень простая в понимании модель, которую используют маляры и профессиональные художники. У них обычно есть несколько основных красок, а все другие получаются добавлением к ним черной или белой. Однако при смешивании художниками красок, полученных на основе базовых, цвет выходит за рамки модели HSB.

Модель Lab

Модель Lab основана на следующих трех параметрах: L — яркость (Lightness) и два хроматических компонента — a и b . Параметр a изменяется от темно-зеленого через серый до пурпурного цвета. Параметр b содержит цвета от синего через серый до желтого (рис. 8). Оба компонента меняются от -128 до 127, а параметр L — от 0 до 100. Нулевое значение цветовых компонентов при яркости 50 соответствует серому цвету. При значении яркости 100 получается белый цвет, при 0 — черный.


Понятия яркости в моделях Lab и HSB нетождественны. Как и в RGB, смешение цветов из шкал a и b позволяет получить более яркие цвета. Уменьшить яркость результирующего цвета можно за счет параметра L .


Откройте окно выбора цвета в программе Photoshop, в поле яркости L введите значение 50, для параметра a введите наименьшее значение -128, а параметр b обнулите. В результате вы получите сине-зеленый цвет (рис. 9). Теперь попробуйте увеличить значение параметра a на единицу. Обратите внимание: ни в одной модели числовые значения не изменились. Попробуйте, увеличивая значение данного параметра, добиться изменения в других моделях. Скорее всего, у вас получится это сделать при значении 121 (зеленая составляющая RGB уменьшится на 1). Это обстоятельство подтверждает факт того, что модель Lab имеет бо льший цветовой охват по сравнению с моделями RGB, HSB и CMYK.

В модели Lab яркость полностью отделена от изображения, поэтому в некоторых случаях эту модель удобно использовать для перекраски фрагментов и повышения насыщенности изображения, влияя только на цветовые составляющие a и b . Также возможна регулировка контраста, резкости и других тоновых характеристик изображения за счет изменения параметра яркости L . Примеры коррекции изображения в модели Lab приводились в КомпьюАрт № 3"2012.

Цветовой охват модели Lab шире, чем у RGB, поэтому каждое повторное преобразование из одной модели в другую практически безопасно. Более того, можно перевести изображение в режим Lab, выполнить коррекцию в нем, а затем безболезненно перевести результат обратно в модель RGB.

Модель Lab аппаратно независима, служит ядром системы управления цвета в графическом редакторе Photoshop и применяется в скрытом виде при каждом преобразовании цветовых моделей как промежуточная. Ее цветовой диапазон покрывает диапазоны RGB и CMYK.

Индексированные цвета

Для публикации изображения в Интернете используется не вся цветовая палитра, состоящая из 16 млн цветов, как в режиме RGB, а только 256 цветов. Этот режим называется «Индексированные цвета» (Indexed Color). На работу с такими изображениями налагается ряд ограничений. К ним не могут быть применены фильтры, некоторые команды тоновой и цветовой коррекции, недоступны все операции со слоями.

С изображением, скачанным из Интернета (как правило в формате GIF) очень часто возникает следующая ситуация. Нарисовать в нем что-либо получится только цветом, отличным от выбранного. Это объясняется тем, что выбранный цвет выходит за рамки цветовой палитры индексированного изображения, то есть этого цвета нет в файле. В результате происходит замена выбранного в палитре цвета на ближайший похожий цвет из цветовой таблицы. Поэтому перед редактированием такого изображения необходимо перевести его в модель RGB. 

Статья подготовлена по материалам книги Софьи Скрылиной «Photoshop CS6. Самое необходимое»: http://www.bhv.ru/books/book.php?id=190413.

Модель RGB (Red - Красный, Green - Зеленый, Blue - Синий) описывает излучаемые цвета.

Модель R G B (Red - Красный, Green - Зеленый, Blue - Синий) описывает излучаемые цвета. Базовыми компонентами модели являются три цвета лучей - красный, зеленый, синий. При восприятии цвета человеком именно они непосредственно воспринимаются глазом. Остальные цвета представляют собой смешение трех базовых в разных соотношениях. Каждая составляющая может изменяться в пределах от 0 до 255, как было рассмотрено в предыдущей главе. Такой способ предоставляет доступ ко всем 16 миллионам цветов. При сложении (смешении) двух лучей основных цветов результат оказывается светлее, чем отдельные составляющие . Цвета этого типа называются аддитивными . Эта модель используется во всех мониторах , проекторах и других устройствах, которые излучают или фильтруют свет, включая телевизоры, кинопроекторы и цветные прожекторы. Web-дизайнер в своей работе ориентируется на такое устройство вывода, как монитор, поэтому мы будем учиться работать в основном с изображениями в модели RGB. Напомню, что она является трехканальной (имеет три составляющие) и 24-битной (цвет одного пиксела представляется 24 битами - по байту на канал).


Цветовое пространство модели удобно представить в виде цветового куба . По осям координат откладываются значения цветовых каналов. Каждый из них может принимать значения от нуля (нет света) до максимального (наибольшая яркость света). Внутренняя часть образовавшегося куба содержит все цвета модели. В начале координат значения каналов равны нулю (черный цвет). В противоположной точке смешиваются максимальные значения каналов, образуя белый цвет. На линии, соединяющей эти точки, располагаются смеси равных значений каналов, образуя серые оттенки от черного до белого - серую шкалу. Три вершины куба дают чистые исходные цвета, остальные три отражают двойные смешения исходных цветов. В обычном RGB-изображении каждый цветовой канал и серая шкала имеют 256 градаций (оттенков).


Изображение, созданное в цветовой модели RGB, может быть сохранено в любом графическом формате, поддерживаемом программой Photoshop, кроме формата GIF.


Недостатком режима RGB является то, что далеко не все цвета, которые могут быть в нем созданы, можно вывести на печать. Избежать потери цветов можно, редактируя изображение в режиме CMYK.

Модели CMY и CMYK.

Модель C M Y описывает отраженные цвета (краски). Они образуются в результате вычитания части спектра падающего света и называются субтрактивными . При смешении двух цветов результат темнее обоих исходных, поскольку каждый из цветов поглощает часть спектра. Иначе говоря, чем больше краски мы положили, тем больше вычли из белого, т.е. тем ниже будет результирующая яркость.


Для начала расшифруем название этой модели. C=Cyan (бирюзовый ), M=Magenta (пурпурный ), Y=Yellow (желтый ). Каналы CMY - это результат вычитания основных цветов модели RGB из белого цвета (то есть цвета маскимальной яркости). Запишем "формулы" получения этих цветов:

  • Бирюзовый = Белый - Красный
  • Пурпурный = Белый - Зеленый
  • Желтый = Белый - Синий

Можно сказать, что модель CMY обратна модели RGB . Посмотрите на рисунок - базовые цвета модели CMY находятся напротив базовых цветов модели RGB. Согласно модели RGB, белый цвет представляет собой сумму трех компонент максимальной яркости, т.е. можно записать:
Белый = Красный + Зеленый + Синий.
После нехитрых математических преобразований получаем следующее представление цветов модели CMY:

  • Бирюзовый = Зеленый + Синий
  • Пурпурный = Красный + Синий
  • Желтый = Красный + Зеленый

Сравните эти формулы с рисунком - все правильно. Желтый цвет лежит между красной и зеленой областями и т.д. Если это рисунок вас не убедил - посмотрите на рисунок модели RGB в предыдущей главе.


Развитием модели CMY является модель CMYK . Она описывает реальный процесс цветной печати на офсетной машине и цветном принтере. Пурпурная, голубая и желтая краски (полиграфическая триада) последовательно наносятся на бумагу в различных пропорциях, и таким способом может быть репродуцирована значительная часть видимого спектра. В области черного и темных цветов наносятся не цветные, а черная краска. Это четвертый базовый компонент, он введен для описания реального процесса печати. Черный компонент сокращается до буквы K (blacK или, по другой версии, Key ). CMYK - четырехканальная цветовая модель. Зачем в модель вводится черная краска? Реальные краски содержат примеси, и при смешении дадут не черный, а темно-коричневый цвет. К тому же при печати очень темных и черного цвета было бы необходимо большое количество каждой краски, что ведет к переувлажнению бумаги и неоправданному расходу красок.


Описанные цветовые модели являются аппаратно-зависимыми . При выводе одного и того же изображения на различных устройствах (например, на двух разных мониторах) вы, скорее всего, получите разный результат. То есть цвет зависит как от значений базовых составляющих, так и от параметров устройств: качества и марки данной печатной краски, свойств использованной бумаги, свойств люминофора и других параметров конкретного монитора, принтера или печатного пресса. Кроме того, существование разных моделей описания для излучаемых и отраженных цветов весьма неудобно при компьютерной подготовке цветных изображений. В полиграфический процесс входят системы, работающие как в модели RGB (сканер, монитор), так и в модели CMYK (фотонабор и печатная машина). В процессе работы приходится преобразовывать цвет из одной модели в другую. Поскольку эти модели имеют разный цветовой охват, преобразование часто сопряжено с потерей части оттенков. Поэтому одной из основных задач при работе с цветными изображениями становится достижение предсказуемого цвета. Для этого создана система цветокоррекции (Color Management System, СMS ). Это программная система, цель которой, во-первых, достичь одинаковых цветов для всех этапов полиграфического процесса, от сканера до печатного станка, а во-вторых - обеспечить стабильное воспроизведение цвета на всех выводных устройствах (например, на любом мониторе). Пространство этой модели аналогично пространству модели RGB, в которой перемещено начало координат. Смешение максимальных значений всех трех компонентов дает черный цвет. При полном отсутствии краски (нулевые значения составляющих) получится белый цвет (белая бумага). Смешение равных значений трех компонентов даст оттенки серого.



Модель CMYK предназначена специально для описания печатных изображений. Поэтому ее цветовой охват значительно ниже, чем у RGB (ведь она описывает не излучаемые, а отраженные цвета, интенсивность которых всегда меньше). Кроме того, как прикладная модель, CMYK жестко привязана к параметрам печати (краски, тип печатной машины и т. д.), которые очень разнятся для каждого случая. При переводе в CMYK нужно задать массу технологических характеристик - указать, какими конкретно красками и на какой бумаге будет отпечатано изображение, некоторые особенности печатного оборудования и т. д. Для разных заданных значений вид изображения на печати и на экране будет разным. Еще одной особенностью модели является теоретически не обоснованное введение дополнительного черного канала. Он предназначен для исправления недостатков современного печатного оборудования. В темных областях особенно хорошо видны погрешности совмещения, возможно переувлажнение бумаги, кроме того, смесь CMY-красок не дает глубокого черного тона. Все эти "узкие места" можно устранить применением дополнительной черной краски. При переводе в CMYK программа заменяет в темных областях триадные краски на черную. Эта замена производится по разным алгоритмам, в зависимости от состава изображения (черный цвет подчеркивает контуры предметов, визуально усиливая резкость), особенностей печати и других причин. Таким образом, в зависимости от установок перевода вид изображения меняется. Неудачный перевод в CMYK (цветоделение ) может привести к серьезным потерям качества. Цветоделение обычно предполагает печать тиража (иначе зачем CMYK), а это, в свою очередь, связано с большими финансовыми вложениями. Поэтому, если вам приходится выполнять подготовку файлов для типографии, необходимо изучить специальную литературу по предпечатной подготовке.


Рассмотрим каналы в CMYK-изображении. Для эксперимента нам потребуется файл photo.jpg . Как видите, в области заголовка окна также показана модель изображения. Сейчас это RGB. Чтобы перевести изображение в цветовой режим CMYK, выберите в меню Image команду Mode > CMYK . Откройте палитру Channels. Там присутствует пять строк - четыре строки цветовых каналов и одна строка совмещенного канала. Активизация и регулирование видимости каналов производятся точно так же, как для RGB - изображения.


Отключите видимость всех каналов, кроме голубого. Заметьте, что изображение стало много светлее. Каналы CMYK складываются так же, как краски, положенные на бумагу. Практически сейчас перед вами голубая форма для печати файла. Именно таким образом будет распределяться краска на отпечатке. Насыщенность цвета максимальна в голубой и синей областях. Они окрашены насыщенным голубым цветом. Голубой есть также в областях оттенков серого. Это означает, что в CMYK оттенки серого формируются из смеси равного количества всех компонентов модели. Область черного и очень темных оттенков изображается на печати черной краской, поэтому она пока остается белой.


Теперь активизируйте изображение черного канала, не отключая голубой. Вы видите форму, в соответствии с которой будет наноситься черная краска. Отключите видимость черного канала, добавьте к голубому отображение желтого канала. Как видите, смешение красок в модели происходит по гораздо более понятному принципу - при сложении голубой и желтой составляющих получаются оттенки зеленого. Зеленый цвет получили также серые участки, поскольку они состоят из равных количеств каждого из базовых компонентов. Отметьте, что изображение тем темнее, чем больше каналов видно на экране. Сделайте видимым и пурпурный канал. Изображение в средних и светлых тонах уже приобрело нормальный вид. В тенях же остались белые участки - все они будут напечатаны черным, а не смесью трех цветных красок.